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The problem of Impact of a body on the surface of a compressible fluid was 
solveri in 1947 by Oalln [ 11. Later, the analogous problem of the pressure 
of a punch on an eClast.10 semiplane was considered by Flltman [2]. 

This paper considers the two-dimensional problem of the impact of a body 
of finite width on a thin plate lying on the surface of a compressible fluid. 
The problem Is formulated In Section 1. Section 2 Indicates the solution of 
the lntegro-differential equation for a certain initial time Interval; the 
integral member of the equation has a difference kernel with semi-infinite 
space change of variables. The solution of this equation Is given as a quad- 
rature . Section 3 gives the existence proofs of the solutloh. SectA.on 4 
gives the solution for any instant of time. Section 5 gives simple formulas 
for the deformation of the plate for small times ln the case where the body 
moves with constant velocity after the impact. Section 6 gives the law of 
motion of the body when the initial velocity Is given and the body moves with 
variable velocity after the impact. In both cases the forces which act on 
the body from the fluid and the plate, are determined. 

The solution Is compared with the solution of the problem of Impact of a 
body on the surface of a compressible fluid with no cover Cl]. The effect 
of the cover on the Impact of the body on the fluid Is investigated. 

The notation Is: 
In the fluid at rest; 

pO, density of the fluid at rest;. c , velocity of sound 
p , density of the plate material; h , plate thlck- 

ness; 2 , width of body; u(t) velocity of the moving body; P(x,y,t) , 
excess pressure:ln the fluid; w)(x,t) , plate displacement; 

21 = xl 1, yI=Y/& t1 = ct I 1, WI = w / 1, Pl 'PI poca, VI= v/c 

are dimensionless quantities (with the index 1 omitted by consent). 

1, Let a thin plate lying on the surface of a compressible fluid at y=O 

be struck at time t = 0 by a solid symmetrical body (Flg.1) having a flat 

bottom of width Z , and moving initially with a certain velocity v,= v(t). 

In Impact problems the solution for an Initial time interval t - 1 1s 

of the greatest Interest. Therefore In this problem we shall solve for the 

time 0 < t < 1. 
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The solution for any instant of time appears to be quite complex. It will 

be also stated ln a final form without investigation. 

Fig. 1 

A shock wave will be propagated In 

the fluid after the impact. The plate 

will be deformed under the action of 

the body and the shock wave. We shall 

solve the problem on the assumption 

that the plate does not tear at the 

edgesofthebody x-0 and x=-l. 

As a first approximation to the plate 
deformation we make the assumption given In 133. This approxlmatlon postu- 

lates the existence of an elastic limit to Hooke’s law; beyond that limit 

the plate behaves as a membrane under a constant tension determined by the 

value of the flow limit Q for tension ln the plastic range. 

Thus, we shall consider that part of the effect of the shock wave on the 

plate that takes place In the plastic state, and that its displacement 

ro(x,t) satisfies the membrane equation 

82w =--a2 g = - ep (5, t) (a=+ [$ e=$) (1.1) 

where p(x,t) Is the pressure on the plate on the fluid side, and Q and 

C are dimensionless parameters. In actual cases Q < 1 . 

The pressure P(x,y,t) In the compressible fluid fllllng the semlexpance 

I/> o is expressed In terms of the normal velocity of motion of the bound- 

ary vY (r,t ) by means of the wave poten.tlal [ 43 

1-Y x+ 
Q(E, $)a 

’ tx9 Y7 4 =f ii \ d-C \ ~(t_T)a_((r_Ef)a-ya 
(y > 0, .*“= I ;v (t - qa - y2) 

From this the hydrodynamic pressure on the plate Is equal to 

p(z, 1) = p (5, 0, t) 

for 

Up until the shock 
w = 0, aw/at=o (t Q 0) WI 

E3y virtue of symmetry In the problem about the line x = -a we have 

the relation 
f.9 (- I, t) =w(z-I, 1) @>i) 

and so the function w(x,t) Is sufficiently determined for x > 0 . 

We note that In the time interval o<t\<l the left edge of the body 
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at 3 = - 1 will not affect the deformation of the plate at _r > 0 . Hence 

the displacement w(r,t) for ; > 0 will be the same as If the body's width 

were eeml-lnflnlte - oo < s< 0. 

The condition 

w(0, t) = s u(7) dz 
0 

muat be satisfied at the edge of the plate x = 0 . 

We set, therefore, 
t-x/a 

w (5, t) = s 
u(z) dz + Wl (5, 0 P>O) (1.5) 

0 

The first term on (1.5) corresponds to the solution of the problem of 

impact of a body on a plate in vacuum, and the second term w,(x,t) gives 

the effect of the fluid on the plate deformation. 

+ recalling (1.1) to (1.5) ln connection with the prevlous bemarks, we 

are led to the problem 

PWl __$~ ;> +Ep=o (z>O) (1.6) 
at2 

q z 0, til - = 0 
at 

WI (0, t) = 0 

(t = 0) (1.7) 

(1.8) 

for the determination of the function ~(x,t) . 

Here the function p(x,t) Is determined by Formula (1.2), where one must 

set 

1 awljat+v(t---/a) (2>0) 
z’u= v(t) @<O) (1.9) 

0. We multiply both sides of Equations (1.6) by CAt, where Re X > y,,, 

the exponent of growth of the function u(t) , and Integrate with respect to 

t from zero to Infinity. As a result, after taking (1.21, (1.7) and (1.9) 

Into account, we get Equation 

w,*J% h)-F a2 aw,gc h'+ +c (h,r - E,)w? (El 5) d!l + 

+a '$--J!J \ {K4 (A 1 5 - E 1) e-hE!a + K, Ih (5 + E)I} dE = 0 (z>O) (2.1) 

Here K," is a MacDonald function; u~'(x,A) and v*(k) are Laplace trans- 

forms for the functions u,(x,t) and u(t) , respectively. 

The integral equation with a kernel depending on the absolute values of 

the difference in arguments, with semi-infinite space change of variables, 

is solved by the Wiener-Hopf-Fok method 

By application of this method to the 

we get the solutlon in the form 
ytico , m 

C2 and 51. 

lntegro-dlffererItla1 equation (2.1) 

(z, V eXX= dz cr > 0) (2.2) 



Here the function k&,x) under- the integral sign Is equal to 

where the Integral must be taken in the sense of a principal value, 

function cp(z,c,) has the form 
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(2.3) 

and the 

(2.4) 

The function8 W(z,A) and cp(~,e, ) are regular In the semiplane Re@ 0; 

for this W - 0 and cp - 1 ae x - 0~ . 

Knowing the function $(x,t), the function u), (x,X) la found by an 

Inverse transformation ln A 

WI (G 0 = .$+ \ wl* (2, A) eafdk (rl> ^lo) 
(2.5) 

We take the procedute of obtaining the function l&,X) with simplified 

expressions for (g(~,c~ ) and ro”(x,A) , a8 well a8 of studying the solution 

I01 (x,t) . 

Upon multlplylng both sides of Equation (2.1) by ebkx, where Re k > 0 , 
and Integrating from x - 0 to x = - , we get 

IS 

Here Z = k /A, e, = e /A, and the function 

W (z, A) = 5 e-lrx IQ* (r, A) dz (I = k IA) 
0 

a Laplace transform for the unknown function u),*(x,A) . 
We agree to choose for the function UJ -/g that branah which Is 

determined ln the a-plane without the branches (- 1, - -) and (1, + 0) 
and which take8 a positive value for - 1 -z 8 < 1 . 

omitting the reaeonlng and the transformations required for the propoeed 
method, we get the function &,A) from (2.6) ln the form (2.3). 

The Inversion theorem applied to (2.3) gives u*(x,A) In the form (2.2). 

The function (P(I,c,), determlned In accordance with (2.4), may be pre- 
sented in the form 

cp (5, %I = (1 + a4 Vm (o (z, e3 

a 0 + 03 (z _p 01) 
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where 
(Ch,x>O for el>O) 

(0s = a, - a,, Re to* > OI (2.8) 
Is regular In the semiplane Re r > 0 , behaves aa r* at Infinity, has a 
branoh point at I = - 1 has no polea in the finite part of the plane, 
and also haa no zeroa und& the condition Re c,r 0 , and for c,=O 

cp (2, 0) = ’ +z 
a 1/i + 2 

If in (2.j) Q - 0 (0 - 0) and c,- - (h - 0) and it la considered that 

lim V< q (2, el) = (I + az) VI + 2 for e, - 0Q 

then we obtain a function W(#,A) which coincides with the corresponding 
function found In [2] for a solution to the problem of the preaeure of a 
semi-punch on a compresalble fluid, which is to be expected. 

It may be established by considering (2.3), (2.4) and (2.7) that the func- 
tion under the integral sign ln (2.2) has one branch point at z = - 1 In 
the aemIpl$ne Re x < 0 and three polea at the point3 I - - 0, , I = - a, 

The function under the Integral algn ln the expresslon for 
the last pole. 

cut (- 1, - 0) . 
Since E > 1, the pole I = - 5 lies on 

By considering these slngularltlea and by deforming the Integration con- 
tour in (2.2) we get after the usual transformations 

where 

1 lo3 
f (6 e,) = ~ - 

s 
cp& s,) dE 

cp (2, e,) n (E - 4 (I - a??) & WEI - 1 
(2.10) 

1 

It Is seen from (2.10) that the function ~(c,,c, ) has a singularity of 
the form ( 

f 
- 1)-l at the olnt 5 = 1 This function enters lnto (2.9) 

with a mult plier (5 - l)g. It followe that the singularity under the 
Integral sign 9 (2.9) la Integrable at ’ < = 1 . 

The function under the integral In (2.10) haa a pole at 5 * l/a. . This 
integral muat be taken In the sense of a principal value; In this sense It 
converges. 

Noting the dependency on h of all functions on the right-hand aide of 
(2.9), it is easy to establish that the function w*(x,)\) found, Is regular 
In the semiplane Re A > y integrable and twice differentiable with res ect 
to x . For this Integra&n and differentiation the second term In (2.9 P 
may be effected under the Integral sign, alnce the lnte ral 

8. 
up to and after 

differentiation convergea uniformly with Xx for I> For this, 

~~~~~~~~~h:h~~~~~~,~~~~~) behaves for Im X - f 0 . In acccud- 
Is continuous for z > 0 when Re A -y, . 

2. as X-0 
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co 
lJ+ (a) 1 s ,-M ~ e-Wa 

w,+(z,a)=--e3r’- -cog is_ 0 [qp] (2.11) 
fi 1 (I - d&)* (1 + a&) E VP - 1 

since for e,= 0 (A = m) 

v= 1, 
1 +a2 i 

lp= - 
u)/l+z’ ’ 

ala=aE_, @1,a=*i(yj%, 0a = 0 

01-k 0, i 

al - as $ (a;,r,,O) 
=+ 

. 

It 1s seen from (2.11) that the function under 
larlty of the form 

,-Xd _ e-Wz 
Z- 

J.x 

(1 - 4)' i-at 

1 ‘Is 
-ii- ) 
the Integral has a slngu- 

This singularity 1s integrable In the sense of 
consequently 

1 q* (I, A) I < a”-’ IJ* (3 

*where C 1s a constant. 

(k--rm) 

a prlnclpal value, and 

The function U*(X) - 0 for X - 0 (the usual 
integral 

-f1+ia, 

s 
WI* (x, 1L) dh 

Yl--ia3 

requirement) therefore the 

converges absolutely. From this it follows that the function m,(x,t) deter- 
mined by the Integral (2.5) 1s continuous for,x >/O and #> 0. 

Further, If It Is required that the function v"(X) behave at lnflnlty as 

y* (a) - a-(1+8) (h-+=,8>0) (2.12) 

then m,(x,t) must be differentiated once under the Integral sign with 
respect to s and t . 
formly with _X and t 

After differentiation the Integral converges unl- 
and so there e&lsts a continuous first derivative. 

Analogously, for condition 

v+ (A) - a-@+Q P.-,-h~>O) (2.13) 
the function w (r,t) may be differentiated twice under the Integral sign 
and so there WI I 1 exist a continuous second derivative. 

3. The solution (2.5) was obtained formally; 
its foundation. 

we establish it briefly on 
The function W(z,X) found, Is regular In the semlplane 

Re I > 0 and reduces to zero as xma at lnflnlty; 
represented as an integral of the Cauchy type 

therefore It may be 

+iw 

1 
w (5 J-1 = - g s w (5 1 a) 

f _ z 4 (Re z > 0) 
-icO 

(3.1) 

(3 “5 
consideration of the properties of the function under the Integral In 

.l and by deforming the contour of integration as-with (2.2), we get 

It follows from (2.9) and (3.2) that the functions WI* (x,h) and W(z,J.) 
are COnneCted by a LaplaCe transformation. 
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By aesw that x = 0 In (2.2) and recalling that the function X(7 1) 
18 regular in the eemlplane Re z > 0 and reduces to zero as z-z at lnfl- 
nlty, and after defonnlng the contour of integration on the semicircle of 
radius R lying on the rlght,side of the semlplane, we get upon letting 
i)-.p: 

w,+ (0, k) = 0 (3.3) 

which must hold by virtue of condition (1.8). 

We remark that the function u,q~,X) In the form (2.9) will be an exact 
solutlon of the lntegro-differential Equation (2.1). 

The integral co 

1, (2, 1) = $1 K,thlz- E h* (E, A) dt 
b 

In Equation (2.1)'may be presented in the form 

im 

I, (z, a) = i&i s IV (2, k) ebz dt 

_ioo vi--d 
we 2 > 0) (3.4) 

lf use Is made of the integral representation for MacDonald functions 161 

O”cos Ia (z - 5)(11 
K,@l~-El)= \ )/- d’I We a > 0) 

0 

mtransformatlon of the lntegral (3.4) like that in (2.2) we get 

0’ (1) 2 ah+ oh a 
I, (2, I.) = - e7 1 e,qJ (an. Q 

-- 2 - (-‘)” VI f a, (On + +J9 (a,, e,) e 
-xI+,x 

a a1 - aa + 
T&=1 

co 

+f\[ 

e? 
1 (1 - aU E V&i 

X 
e? + (i i) 

Recalling the e uallty 
Donald functions [ % 1 

(3.4) and another Integral representation of Mac- 

the free term in Equation (2.1) Is presented in the form 

1, (2 , {K, (7L 12 - 5 I) eeaFJO + KoIh (2 + f)lldE = 

00 

v* OL) ,-AXE 

=e I.% s - d& 
1 

(1 - aE) E VE? - 1 

Upon substitution of (2.9), (3.5) and (3.6) Into (2.1). and recalling that 

01 D satisfies the algebraic equation e,+(~_a~za))/i_ze=O, we get an lden- 
tity. 

It Is shown that the function 
lntegro-differential equation (?.l Y 

:(x,1) 1s actually a .solutlon of the 
. 

As has been shown above, the continuous derivatives 
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exist under conditions (2.13). 

The function 
Y,+foo 

1 
p 6% 1) = g s A’ If1 (x, 1) + Is (x, 511 eat dl (3.8) 

will be continuous, evidently, even for the weaker condition (2.12). 

E?y substitution of (3.7) and (3.8) lnot (1.6), and after recalling (2.1), 
we get an identity. 

By assunlng t = 0 In (2.5) and ln the first derivative with respect to 
t of the lnte ral of (2.5), and after deformation of the contour of lnte- 
gratlon as In ‘i 3.3) we get u),- 0, 
from (3.3) that IQ lO,t) - 0 . 

awl/at = 0 for t = 0 . It follows 

The solution w,(x,t) In the form (2.5) under conditions 2.1 ) will be 
an exact solution of Equation (1.6) fir conditions (1.7) and 1.8 . t 3 

The uniqueness of the solution is evident. 

In the case where the function u(t) eatlsfles condition (2.12), the 
derivatives (3.7) will not be continuous. NeverthelOss the combination of 
the second derlvatlvea v.rim 

will be continuous, as follows from (2.11). 

We examine the dlscontlnultles in the second derlvatlves. For this we 
take the function U(t) In the form 

u (1) = VP (v = cons& 8 > 0) (3.9) 
Then 

Y* (A) = vr (1 + 6) A-(1+8) (3.10) 

where r Is a gamma function. By substitution of (3.10) into (2.5) and 
recalling Equation (2.11) for small t , we get 

__ (3.11) 

-eV 

w1 = (1 + a) (2 + a) It s m h (f - xE) (f - xQs+‘- h(t - zla)(t - ~/a)~+‘~~ -f o (p) 

I (I - a&Y (1 + a&) i VE2 

Here h(t) = 1 for t > 0 and h(t) = 0 for t c 0 . 
It follows from (3.11) that the second derivatives with resp?-t to xand 

t suffer dlscontlnultlee of the second kind on the 
nave front propagated over the plate with velocity 
be expected, since according to (1.5) 

w (2, t) = V (I + a)-’ (t - x / all+’ + q (x, t) 

the second derivatives suffer discontinuity at x - 0, t = 0 . Since the 
differential operator In (1.1) Is a wave operator, the discontinuity will be 
conserved for t > 0 In U) (x,t) demonstrating the effect of the fluid on 
the plate deformation, and ihe dlsiontinulty will be propagated in the plate 
with a dimensionless velocity a . 

4, The solution (2.11) 1s found for the time 0 < tf i. For the time 
0 < t < @Jthe problem reduces to the solution of the lntegro-differential 

equatlon, more complicated than (2.1). It has the form 
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Application of the Wiener-Hopf-Fok method to Equation (4.1) leads to a 
Fredholm equation of the second kind for the function W(z,X) 

By solving Equation (4.2) by the method of successive approximations, we 
get 

Here the function 
co 

UJ (2, h) = +- s (1 --e -9 cp Vi, ed 
1 (2 + El (1 - a’&‘) EvEa - 1 

dE 

As a result, we find the function ~(s,t) to be of the farm 

u,;ia y+icn 

Wl b:, 6 = &p \ ?dh \ 3tw (z, k) P% ip>>J#@ ;&J (4.4) 

y,-io3 y-i02 

It may be shown that the number of terms in (4.3) will not be Infinite as 
in (4.2), but will be finite over a small dimensionless time t . 

51 We consider the case where the body after Impact begins to move with 
constant velocity v(t) = V . 

The solution may evidently be obtained as a llmlt of the general Solution 
corresponding to the case In (3.9), for & - 0 . 

By recalling (3.11) and (3.12); letting 6 - 0 In (3.11), and integrating 
with respect to 5 , we get for small times with an accuracy to t2 

?I, = 0 for q > 1, w = - eVt2f (q; a) fat a <q < 1 t5.u 

7u = V (1.(i - aelq) -I- EL% [(I -- c-1$2 f (0; a) - f (q; a)] for 0 < q < a 

Here 

q=+, 

- + V(1 -a2) (i -q2) - 
q---6 

h - - ~_____ 
2 (1 - “2) 1 (5.2) 



Upon letting a - 1 (5.2) we get 

f (q; 1) = '/a n-1 [ cos-’ q $ VI8 (1 - q) I/1_11zj 

F (r) = s p (I, 1) dx, 
-1 

It follows from (1.2) that 

Fig.2 shows the form of plate 
deformation woo= U'(Q) from For- 
mula (5.1); for this u"= to/Vt. 
The solution Is continuous In this 
case and the derivatives suffer 
discontinuity on the line 3~ = at. 
The curve of UI' has a vertical 
tangent at the point q= a (Fig.2). 

We determine -the force F(t) 
acting on the body from the fluid 
and plate. Evidently 

0 

F* (h) = ’ s P* (2, a) dx (5.3) 

-1 

-1 0 

p* (2, a) = $ s &(5141)9c$- s Ke (A J x ‘- 5 I> w* (E, 4 dE + 
-1 -m 

w 

+$\ O"2 
K,(hlz- E’l) w* (5, a) & = &S 

_ ehrE _ ,-na+xs d~ + - 
0 1 

f?P--f 

03 

+;\ {K, P. (x + 5)l 4 Ko IA (x + 1 f ElII w* (Es N dt (- 1 a.2 ( 0) (5.4) 

0 

In the case considered the function 

w+ (x, h) = VA-2 e-)ix'= +w1* (x,J.) (5.5) 

Q substitution of (5.5) into (5.4), then (5.4) into (5.3), and lntegra- 
ting with respect to x , we get 

The function W(<,x) entering Into (5.6) has a rafher complicated form 
(2.3). For the Inverse transformation of (5.6) we use the first axpamlon 
theorem for Laplace transformations [7]. According to this theorem If the 
transform i8 expanded In a Laurent series with A + 0~ then the original 
series is in powers of t which converge uniformly ani which represent in 
themselves the complete function. 

For A - m we have E*_ 0 . We denote 

(3: > 1) (5.7) 
and in agreement with (2.4) we shall have 

O" C(Z,el) 
cp (x, sI) = ex = Z: nl 

n-0 

(5.8) 

The series (5.8) converges uniformly with x for X> 1 and for small 



1 c, 1, alnce for C, + 0 the function w - 0 . 

For small Ic, 1 the function Is expanded In a uniformly converg,lng series 

Here 

xm (2) 
(-1)” im 

=2ni s 
4 

_fa, (1 -a9ca)m(i -6a)m/2(z -5) = 

cp (-VW s & 
2% o (29 + Ea) (I -+ as!?)” (1 A- P)“‘” 

By substitution of (5.9) into (5.8) we shall have 

=I+; eln i: + 
x (xl1”’ . . . (f)‘” 

-1 m=i (cl19 . . . , ‘?k) 

Here the sumPatlon is taken over those combinations of whole numbers 
$7,) gPI...,qk equa: to 1,2,. . . . for which 

k k 

i=l i=l 

We get after analogous transformations 

(5.10) 

(5.11) 

where 

By recalling (2.3) and (5.12) and carrying out the inverse transformation 
of (5.6) we obtain as a result the force F(t) in the form 

F (t) = V [I - 2 en-’ C, (a) P] 
n=1 

(5.121 

where the coefficients Cm (a) are 

c12(l-y- - 1+)/i vlala~ In a 1 
co 

c,*= +- I+ 
( 

If Jf1-s 
,:T (pln a 

In (E -I, V&’ - 1) & 
- 1 CI (a) f f s &* (i t_ af)* (P - 1) (1 - at. 

1 

c, = 
2 cu 

(n + 2) Jt’ 5 
1 

, dE 
(I + 4) E VP - 1 

(n = 3, 4, . . .) 

It may be shown that the series (5.12) converges rapidly. 

In case the plate 1s absent (e = 0 , a = 0) a simple expression for the 
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force p,,(t) acting on the body from the fluid, from (2.3) and (5.6), as 
well as from the results of [l] 

F, (t) = V (1 - t) @6tdl) (5.13) 

By calculating the coefficients in the series (5.12) by numerical inte- 
gration for given values of c and c , an estimate may be made of the 
effect of the plate on the Impact of body and fluid by comparing (5.12) with 
(593). 

6. Let the Initial velocity of the body at the Instant of impact be equal 
to v,, 
v(t) . 

and afterwards let the body move with a certain unknown velocity 
We determine the law of motion of the body. 

The force acting on the body from fluid and plate will be 

d fF(t-z) 
R 0) =dt s V 

v (z) dz 

0 

(‘3.1) 

according to the principle of Duhamel. Here the function F(t) must be 
taken from the solution of the preceding problem In agreement with Formula 
(5.12). 

The force R(c) is directed against motion of the body and therefore its 
equation of motion In dimensionless variables will have the form . 

dv 
-= 
0% - ILR 0) (ILJg) 

Here m is the mass of the body per 
parameter p is small. 

By recalling (5.12) and substituting 
differential equation 

t 

y + pv (t) - p \ K (t - z) v (z) dz = 0, 

0 

unit length. In real cases the 

(6.1) into (6.2) we get the lntegro- 

co 

K (t) = 2 ns"-ICY,, (a) P-1 (6.3) 
n=1 

kernel and solving (6.3) by opera- Retaining only the first term in the 
Mona1 methoas for the condition u(O) = V, , we get an approxlmate solution 

v (t) = voe-o.b~f pqo.5 xt) - x-+I ainh(O.5 xt) 1 (X = Vpz + 4pC, (a)) (6.4) 

which becomes more accurate the smaller Is t . 
It follows from (6.4) that 

dv / dt < 0, d2v / dt2 j 0, dv I da < 0, dv/dp<O 

Knowing u(t), we find the resi:tance force ,?(t) from (6.l)as the obvious 
function R (t) = Voe-0.5pt [cosh(O.5 xt) - x-l @h + 2c, (cc)) shh(0.5 xt)] (6.5) 

From (6.5) It follows that 

dR / dt < 0, d2R / dt2 > 0 

aR I ifh > 0, aR/@<O 

Results of numerical calculation show 
that: 

1) if m Is large (n = O), then 
u z v, and R depends strongly on the 
parameter c ; 

2) If the parameter u Increases 
(mass of the body decreases), then the 
dependence of v on c Is strengthened, 
and that of R on Q Is diminished. 

Fig. 3 
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From this the conclusion follows at once, 
that the velocity u of the body diminishes 
resistance force .@ on the body increases, 

It is known [lj that in case of impact of 

if we recall that o= C-l l/o/p, 
with increasing o/p , and the 

a body on the surface of a com- 
pressible fluid, its velocity v,(t) and the force A,(t) of the fluid on 
the body, are equal to 

u, (t) = voe-o~5~f [~~h(O&,t) - x0--’ psinh(O.5 xot)] (6.6) 

R, (8) = v,e-0.5” [co8h(0.5 xot) - x0--’ (p + 2)~ (0,5 x,t)] 
P = If-!-@ + G) 

(6.7) 

for o<t<1. 

Numerical estimates may be made from Formulas (6.4) to (6.7) of the effect 
of the plate on the impact of a body on a compressible fluid. 

In the exam le of Fig. 3 
‘i 6.4), (6.5) ani ;?g:: &.i) 

2 and l', 2' have been drawn 
from Formulas 
p = 0.4 . 

corresponding to a =.0.8 and 
As Is seen from the curves, the iffect of the plate on the velo- 

city of the body Is Insignificant, but that there is a greater effect on the 
force of resistance. 
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