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The problem of impact of a body on the surface of a compressible fluid was
solved in 1947 by Galin [1]. Later, the analogous problem of the pressure
of & punch on an elastic semiplane was considered by Flitman [2].

This paper considers the two-dimensional problem of the impact of a body
of finite wldth on a thin plate lylng on the surface of a compressible fluid.
The problem 1s formulated in Section 1. Section 2 indicates the solution of
the integro-differential equation for a certain ilnitial time interval; the
integral member of the equation has a difference kernel with semi-infinite
space change of varlables. The solution of this equation is glven as a quad-
rature. Section 3 gives the existence proofs of the solutioh. Section 4
gives the solution for any instant of time. Section 5 gives simple formulas
for the deformation of the plate for small times in the case where the body
moves with constant velocity after the impact. Section 6 gives the law of
motion of the body when the initial veloclty is glven and the body moves with
variable veloclity after the impact. In both cases the forces which act on
the body from the fluid and the plate, are determined.

The solutlon 1s compared with the solution of the problem of impact of a
body on the surface of -a compressible fluid with no cover [1]. The effect
of the cover on the impact of the body on the fluid is investigated.

The notatlon is: p,, density of the fluid at rest;. ¢ , velocity of sound
in the fluid at rest; p , denslty of the plate materlal; hn , plate thick-
ness; 1 , width of body; wv(¢t) , velocity of the moving body; Plx,y,t) ,
excess pressure:in the fluid; wlxst) , plate displacement;

m==wxll, m=yl/l, t=ct/l, w=w/l, Pi1=Plpc? vi=v/c
are dimenslonless quantities (with the index 1 omitted by consent).

1., Let a thin plate lying on the surface of a compressible fluid at y =0
be struck at time ¢ = O by a solid symmetrical body (Fig.l) having a flat

bottom of width [ , and moving initially with a certain velocity v, = v(t).

In impact problems the solution for an initial time interval ¢ ~ 1 1s
of the greatest interest. Therefore in this problem we shall solve for the

time 0 <2< 1.
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The solution for any instant of time appears to be quite complex, It will
be also stated in a final form without investigation.

A shock wave will be propagated in
the fluid after the impact. The plate
\Hnnnuy”””” willl be deformed under the action of
the body and the shock wave. We shall
solve the problem on the assumption
that the plate does not tear at the
edges of the body x = 0 and x =-1.

Fig, 1
As & first approximation to the plate
deformation we make the assumption given in [3]. This approximation postu~-
lates the existence of an elastic limit to Hooke's law; beyond that limit
the plate behaves as a membrane under a constant tension determined by the
value of the flow limit ¢ for tension in the plastic range,

Thus, we shall consider that part of the effect of the shock wave on the
plate that takes place in the plastic state, and that its displacement
wlx,t) satisfles the membrane equation

Pw 2w

e wfiowen (ot em) as

where p(x,t) is the pressure on the plate on the fluid side, and o and
¢ &are dimensionless parameters, In actual cases g < 1 .

The pressure P(x,y,c) in the compressible fluid filling the semiexpance
y > O 1s expressed in terms of the normal velocity of motion of the bound-
ary v,{x,t) by means of the wave potential [}4]

-y x
1 9 vy, (E, ¥)dE
Pyd=5z5 OS dtxg-]/(z—t)*—(z—ﬁ)’—y’

>0, z, =2+ V =P —y)

From this the hydrodynamic pressure on the plate is equal to

t x+(1—%)
19 v, (€, 1) dE
p(z, ) =P (z,0,8) =+ 2\de _ v U5 1.2)
= 0‘5 wlny V= —@—8)
for
_fow/at (@<l —1, 2>0)
w={0 (r<e<0 (13)

Up until the shock
w=0 ow/dt=0 (<0 (1.9

By virtue of symmetry in the problem about the line x = — % we have

the relation w(—zt)=w(z—1,10) (z=21)

and so the function w(x,t) 1is sufficiently determined for x > O .,
We note that in the time interval 0 <CZ<{1 the left edge of the body
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at x = — 1 will not affect the deformation of the plate at x > O . Hence
the displacement up(x,t) for x > 0 will be the same as if the body's width
were semi-infinite — oo < z < 0.

The condition '
w0, ) = v(x)ar
0

must be satisfied at the edge of the plate x = O .,

We set, therefore,
t-xfa

wiz, )= { v@drtw (@) @E>0 (1.5)
1]
The first term on (1.5) corresponds to the solution of the problem of
impact of & body on a plate in vacuum, and the second term w‘(x,t) glives
the effect of the filuld on the plate deformation.

By recalling (1.1) to (1.5) in connection with the previous Yemarks, we
are led to the problem

3w 04wy 0 1.6
SE % tep=0 @20 (46)
w, = 0, %"tz -0 (t=0) (1.7

w, 0,8) =0 (1.8)

for the determination of the function uw, (x,t)

Here the function pl(x,t) 1s determined by Formula (1.2), where one must

set — {awl/6t4—v(t-—x/a) (x>0) (1.9)
v v () (z0)

2, We multiply both sides of Equations (1.6) bty e M, where Re \ > Yo »
the exponent of growth of the function v(¢) , and integrate with respect to
t from zero to infinity. As a result, after taking (1.2), (1.7) and (1.9)
into account, we get Equation

w*(x, A)_E;.‘?ﬂ'_(_ﬁ’m+ig K,(Mz—E)wr (8 1) dE +
+ e v* (MS{K (l|x——§|) e—AE/a+K A (z+ B dE=0 (z>0) (2.1)

Here Xo is a MacDonald function; w, *(x,A) and * (1) are Laplace trans-
forms for the functions g, (x,t) and wv(¢) , respectively,

The integral equation with a kernel depending on the absolute values of
the difference 1n arguments, with semi-infinite space change of variables,
is solved by the Wiener-Hopf-Fok method {2 and 5].

By application of thils method to the integro-differential equation (2.1)
we get the solution in the form
y+ioo
(@A) = o \ AW (z, \) er=zdz x>0 2.2)

<

v-ioo
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Here the function W(z,.) under the integral sign is equal to

v* (M) 9(z, Bl)icgo 9 ends (2.3)
M ftarn ) U —aeEVE—1

where the integral must be taken in the sense of & principal value, and the

function o(g,¢,) has the form
+ioo

Wz 1) =—e

@ (2 &) = oxp {5 Sw In[1+ (1_@?:‘},1_:2;] 21 e

The functions Ww\z,A) and o(z,¢,) are regular in the semiplane Re #> 0;
for this Ww—-0 and 9o~ 1 as z - o .

Knowing the function wl'(x,t), the function w, (x,2) is found by an

inverse transformation in
¥y +i00

w, (z, t) = L S w,* (z, M) eMdh (11> 70) (2.9)

25
v,-100
We take the procedute of obtaining the function W(z,A) with simplified
expressions for ¢fz,¢,) and w*(x,A) , as well as of studying the solution
w, (xot) .

Upon multiplying both sides of Equation (2.1) by e"", where Re x> O,
and integrating from x =0 to x == , we get

(1—oos i) wan+ S [wen + r3g e m]x
1
d v (A) o FiN dg
“EopvEor AR [<1+az)w—z’+ "E(w&waut] *
2 1 Fow® (z, A
+%u'(x)+§—,[—£——)]m=o O< Rez< 1) (2.6)

Here z=k/\, &, = e /A, and the function
o)

Wiz A) = S ¥ w,* (2, A) dz (3=k/Aa)

0
is a Laplace transform for the unknown function p, "(x,A) .

We agree to choose for the function w =¢/1 — 22 that branch which 1s
determined in the g-plane without the branches (— 1, —=) and (1, + =)
and which takes a positive value for — 1< g < 1,

Omitting the reasoning and the transformations required for the proposed
method, we get the function N(g,A) from (2.6) in the form (2.3).

The inversion theorem applied to (2.3) gives p*(x,A) in the form (2.2).
The function ¢(r,c, ), determined in accordance with (2.4), may be pre-

sented in the form
_U+anVis:
P ) = e T a) G+ )

where q, s are roots of the equation & + (1 —a*s*) ¥'1—2' = 0,151ng in the
semipl Re g < 0 ynder the condition Re ¢,> O (Re A > 0), Por this

a3 = ¥ 1—mn,? and o1 =1, Q) — Q)+ 1y i V3(Q,4 Q)

'17 (zl 81) (2‘?)
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where ' { —q? ) s
Q,',_—:{[:—L-iq- (_é_@_“)’i%]/} Q12 >0 for 2, >0)
The function 0
¥ (3, &) = exp [%S In (V1it E;;;ci_l)g(’}::: §-+w.)] E"—iﬁ .
0 L2
(03 = @ — Q,, Rew; >0 (2.8)

is regular in the semiplane Re z > O , behaves as z* at infinity, has a
branch point et 2z = — 1 , has no poles in the finite part of the plane,
and also has no zeros under the condition Re ¢,> 0 , and for ¢,= O

1 +az
70:%
v 0 =

If in (2.3) ¢ =0 (0 -~ 0) and ¢, ~o (r = 0) and it 1s considered that
lim Ve o(z,e)=(1 +az) V1 + 2z for & — oo

then we obtain a function w(g,.) which coincides with the corresponding
function found in [ 2] for a solution to the problem of the pressure of a
semi-punch on & compressible fluid, which 1s to be expected.

It may be established by considering (2.3), (2.4) and (2.7) that the func-
tion under the integral sign in {2.2) has one branch point at > = — 1 1in
the semipldne Re » < O and three poles at the points z = —g, , 2z = — a,
and - — . The function under the integral sign in the expression for
V(:.x’ (2.33, has the last pole. Since g 7, the pole gz = — g lies on
the line of the cut (— 1, — =) . !

By considering these singularities and by deforming the integration con-
tour in (2.2) we get after the usual transformations

2
*(z,A) = — ) [2 0+ o —yn V1 — a40if (ap, &) apx
ot = e SR St D RS 1 s AR

_LmL A+eh) VB -1 _
T § [ g 16 e‘)]el’+(1—a=§’)= B—1n° w"‘i} (ReA>y) (2.9

where

ot a7 ¥ e ot
/(s 8) = Q(z, &) n ]S E—2 (41— ualga) rye_—1 2.10)

It 18 seen from (2.10) that the function pg(£,¢,) has a singularity of
the form (i - 1) at theyfoint g = 1 . This functlon enters into (2.9)
with a multiplier (£ — 1)% . It follows that the singularity under the
integral sign in (2.9) 18 integrable at £ = 1 .

The functlon under the integral in (2.10) has a pole at £ = 1/a . This
integral muat be taken in the sense of & principal value; in this sense it
converges,

Noting the dependency on A of all functions on the right-hand side of
(2.9), 1t 18 easy to establish that the function »*(x,\) found, 1s regular
in the semiplane Re A\ > y,, lntegrable and twice ditrerentiable with respect
to x . Por this integratlion and differentiation the second term in (2.9?
may be effected under the integral sign, since the 1nte3ral up to and after
differentiation converges uniformly with Ax for x > (. Por this,
w,’(',cx) =0,

We clarify how the function lﬂxﬁx) behaves for Im )\ - + » . In accad-

ance with {2,9) the function 1,"(x,)) 1s continuous for z >0 when Re) =y, .
We get from {2.9) a8 2 ~ =
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dt 4+ 0[1’-1—(,’1)—] (2.11)

v* (A) _Lio MR, A
wt (@) =—e Ja—dprd+ad) EVE -1

since for ¢,= 0 (A = =)
14 az
aVi+z!
Wy - Oy 1 . 2 R
a; — ay \P(“l,m'o) T2 (1+ a)

It is seen from (2.11) that the function under the integral has a singu-
larity of the form

1 1 — a2\
q;—-.:i, p= alﬂ:T’ ml'a=il('—aT—) . w; =0

ek _ Ax/e -~ Az
(1 —af)? 1 —af
This singularity is integrable in the sense of a principal value, and
consequently
Jwy® (z, A) | < CA-t v* (A)

(A —» o0)

‘where (¢ 18 a constant.

The function p*(y) - O for A - = (the usual reqQuirement) therefore the
integral 4 )
1 {oe]

w* (:t, A') dA
Y.:—ioo
converges absolutely. From this 1t follows that the function w,(x,t) deter-
mined by the integral (2.5) 1s continuous for z > 0 and > 0.

Further, if 1t 1s required that the function »*(A) behave at infinity as

v* (A) ~ A~ (A — 00, 6 > 0) (2.12)

then w.(x,t) must be differentliated once under the integral sign with
respect to x and ¢ . After differentiation the integral converges uni-
formly with x and ¢ and so there exlsts a continuocus first derivative,

Analogously, for condition

p* () ~ A0 (A — o0, 6 >0) (2.13)

the function w, (x,¢) may be differentiated twice under the integral sign
and so there wiil exlst a continuous second derivative.

3. The solution (2.5) was obtalned formally; we establish it briefly on
its foundation. The function Ww(z,\) found, is regular in the semiplane
Re 2z > O and reduces to zero as 2 ° at infinity; therefore it may be
represented as an 1ntegral of the Cauchy type

+i00 g A.)
1 W (
Wi(h) = —~57 & T-j———z dt (Re z > 0) 3.1)

-{o0

B¥ consideration of the properties of the function under the integral in
(3.1) and Yy deforming the contour of integration as_with {2.2), we get

o ) [2 ot 0 Vi—a,0,f (e, 8) 1
Wi = —e S e S 0 e e ot
n=1

1011 (t+af) VE—1 _at
+ "TS [?—— / (§, 81)]612+(1~az§2)2(§2_” 2 _: E} (Re 2 > 0) .(32)

It follows from (2.9) and (3.2) that the functions w,* (z, A) and W (z, A)
are connected by a Laplace transformation,
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By assuming that x = O in (2.2) and recalling that the function w(, 1)
18 regular in the semiplane Re 2 > O and reduces to zero as 2 ? at infi-
nity, and after deforming the contour of integration on the semicircle of
radius R 1lying on the right . side of the semiplane, we get upon letting

R=e w,* (0,7 =0 (3.3)
which must hold by virtue of condition (1.8).

We remark that the function w{ﬁx, in the form (2.9) will be an exact
solution of the integro-differential Equation (2.1).

The integral ©

e =\ Ko Olz — D (.0 &8

[
in Equation (2.1) ‘may be presented in the form

e W (2, &) €%*
I 6N = o S A ¢ (Re z >0) (3.4)

if use is made of the integral representation for MacDonald functions [6]

oo N _
Koz — g = { =Bl [V———ix+ ,,?"]
o

By- transformation of the integral (3.4) like that in (2.2) we get

dn (Red > 0)

: v* (A) 2 ot : &0, f (3, &) -—ldnx
Iz W) = —e—5 { a ay — M;—] (-n* V1¥a,(o+ )¢ (a, ) +
1 ¢ e’
+TS[(1_Q§)§V§’ +(1—0252)(1+0§)V§2—1/(§,el)1
Pt
X T T — b — 1)} (3.5)

Recalling the eguality (3.4) and another integral representation of Mac-
Donald functions [

2 g~ ME+EI

Ko b (= + D) =S e (x + £>0, Red>0)

1
the free term in Equation (2.1) is presented in the form

I hy = e \ Koz — 80 e 4 Kol (= + DG =

(-3

v* (A) g e-AxE

= A S(i—ag)u’a’—fi

Upon substitutlion of (2.9), (3.5) and (3.6) into (2,1), and recalling that
alt satisfles the algebraic equation e 4{1__a;2”‘/1__zL—0 we get an liden-
tity.

1t is shown that the function *{(x,A.) 1s actually a solution of the
1ntegro-d1fferent1a1 equation (2 1?

As has been shown above, the continuous derivatives

3 (3.6)

" ’ Yi+ico " 1 wrr*iooa1 * (2 A

s w, w T, .

=g ) merena, FR=gg | PEEEMa e
Y1-i0

¥-i00
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exist under conditions (2.13).
The function
y+ioo
Pz z)=271;i S M@ A F sz V)] M @.8)
¥,~i00
will be continuous, evidently, even for the weaker condition (2.12).

By substitution of (3.7} and (3.8) inot (1.6), and after recalling {2.1),
we get an identity,

By assuming ¢t = O in (2.5) and in the first derivative with respect to
t of the integral of (2.5), and after deformation of the contour of inte-
gration as in (3.3), we get w, = 0, awl/%t =0 for ¢t =0, It follows
from (3.3) that g, (0,¢) = O .

The solution y, (x,t) 1n the form (2.5) under conditlons éE.l?) will be
an exact solution of Equation (1.6) fir conditions (1.7) and (1.8).

The uniqueness of the solution 1s evident.

In the case where the function v(t) satisfies condition {2.12), the
derivatives (3.7) will not be continuous. Neverthel®se the combination of
the second derivatives

3’wl 32w1 1
e SUPS | = p—
ol 0xd 2ni

Yi+ico

S [[J\,’w‘ (z, A) — a?
Yi—foo
will be continuocus, as follows from (2.11).

We examine the discontinuities in the second derivatives, PFor this we
take the function v(t) in the form

Pl )] iy
x

v(t) =Ved (V = const, & > 0) (3.9)
Then

v (M) = VI (1 4 8) A~1+D) (3.10)

where T 1s a gamma function. By substitution of (3.10) into (2.5) and
recalling Equation (2,11) for small t , we get (3.11)

d§ + 0 ()

oo

_ —eV S h(t — zb) (¢ — 2B)¥*°— h(t — z/a)(t — z/a)?*®
’”‘“(H-fs)(2+°>ﬂtx (1—ab)? (1 +ab) EVE —1
Here n(t) =1 for ¢ >0 and n(¢) =0 for t.< O .

It follows from (3.11) that the second derivatives with resp2~t to x and
t suffer discontinuities of the second kind on the line = at , & bending
wave front propagated over the plate with velocity a6 =«o/p . This is to
be expected, since according to (1.5) -

wiz, ) =V 81—/ 4wz

the second derivatives suffer discontinuity at x = 0, ¢ = O ., Since the
differential operator in {1.,1) is a wave operator, the discontinuity will be
conserved for t > 0 in y, (x,¢t) , demonstrating the effect of the fluld on
the plate deformation, and the discontinuity will be propagated in the plate
with a dimensionless velocity g

4. The solution (2.11) is found for the time 0 << ¢< 1. For the time
0 < t < o0 the problem reduces to the solution of the integro-differential
equation, more complicated than (2.1). It has the form
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a? 3w* (z, )

wf ) — G g e\ Koz — 8 + Kolh(z 4 1 + B X
L]
. vt (0 ¢
xut 62 88+ e T | Kol —2) 4 Ko (e 1 + 1ot 4
. 0
+\x, bz+Dld)=0 (>0 (4.1)
o

Application of the Wiener-Hopf-Fok method to Equation (4.1) leads to a
Predholm equation of the second kind for the function w{(z,\)

o0

(z,
Wy + o5

ek ) WEN eg* (M)

: LI MR Cal COL - LY,
e DA+ VE—1 "~ 7 % Ta: 0®W
(Re 2> 0) “.2)

By solving Equaticon (4.2) by the method of successive approximations, we
get

* (A ,
P ICLTCE AR

oo

o ne n 9 (B, ) ¢ aE
+ —2) .\ e A 4 -
ﬂgl ( b1 ) § S (gnv }'-) |I_Il (E(_l + Ei) “ + (’-Ei)n V-——Ei’ —1 ] (Eo z) (4-3)

Here the function

1§° —cg o) .

PN = e T — eV BT

1

As a result, we find the function y, {x,t) to be of the form

Yy+i00 Y+ica
R S W " Az 3 T1>Te Y>>0
w, (z, t) = PETE S et d S AW (Z, Av) € dz (x > 0’ 0 < t <°°)) (4.4)
¥,~100 Y-ic0

It may be shown that the number of terms in (4.3) will not be infinite as
in {(4.2), but will be finite over a small dimensionless time ¢ .

5, We consider the case where the body after impact begins to move with
constant veloclty wv(g) =V .

The solution may evidently be obtained as a limit of the general solution
corresponding to the case in (3.9), for 8 -0 .

By recalling (3.11) and (3.12), letting & - O in (3.11), and integrating
with respect to £ , we get for small times with an accuracy to t°

w=0 for n>1, w = — eVi*f (n; @) for a <1 5.1)
w=V{{d —aly) e [(1 —aln)2fO;a) —fMma)l for 0K a

Here
d 1 - a)? ‘ T — a1 —n9)
s Lo L el g P | Rty B AT N
¥Vt -« 20 (V1 — a3)® n—a -

M —unfi___—_ﬂz}
2(1 —a?)
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Upon letting o = 1 (5.2) we get
fmﬂ)=lhwﬂlwr'n+’&(1—n)V1—nn

Fig.2 shows the form of plate
deformation p°= »°(n) from For-
mula (5.1); for this "= /V¢.
The solution 1s continuous in this
case and the derlvatives suffer
discontinuity on the line x = qt.
The curve of w° has a vertlcal
tangent at the point n=¢q (Fig.2)

We determine the force F(t)
Fig. 2 acting on the body from the fluid
w* and plate. Evidently

0 0
ro=\reoim o= \ e as P
-1 -1
It follows from (1.2) that

|

-1

[}
o n = SK.,<Mx—§f>d§+~ { Kotz tpwr @ mat+

- | V O o & _ Ak
+—n—gxo<m—§|)w*<§,x)d§=x;§ ;Vg‘—"z.e_i &+
0

+E e+ Bt 1+ OB ENE  (—1<2<0 G4
0
In the case considered the function

w* (z, A) = VA2 €M% pn® (2, 1) (5.5)

By substitution of (5.5) into (5.4), then (5.4) into (5.3), and integra-
ting with respect to x , we get

Fr) =

v _ ZKL§ 1 — ™ 2 T 1 — ™
AR iy BV E =1 +“-§V§2

The function W(g 1) entering into (5.6) has a rather complicated form
(2.3). Por the inverse transformation of (5.6) we use the first axpansion
theorem for Laplace transformations [7]. According to this theorem i1f the
transform 18 expanded in a Laurent series with )\ - » , then the original
serles is 1n powers of ¢ which converge uniformly and which represent in
themselves the complete function.

For A - » we have ¢;~ O . We denote

TV &N dE (5.6)

io0
1. % d;
xzm) = _é;i—igoo ln[i +(1 —a®3) V1 —C’] —1
(> 1) (5.7
and in agreement with (2.4) we shall have
0 (oo = = 3 L5 (5.8)

n=0
The series (5.8) converges uniformly with x for x> 1 and for small
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le,], since for ¢, -0 the function y - O .

For small |¢,| the function 1s expanded in a uniformly converging serles
o0

Am (Z)
X e = Y e (5.9
m=}
Here .
m wo
@ =50 | & -
Xm 2mi 2 (4 —ax)™ @ —LY™/2(z —1)
=" { dt
— z
- 5.10
; § (= ¢ B (1 + a8 (1 + 82 19
By substitution of (5.9) into (5.8) we shall have
xQ 1 o] Xm n
Pz, 8) =1+ 2 W[Z _,_n—elm] =
na==] m=1
oo n ax
1 x| (*_h)
=1+ Y Yo 2 (%) p
na=] m=1 Q1+« dk)
Here the summation is taken over those combinations of whole numbers
915 @aresergy €qual %o 1,2,..., for which
k k
2 gy = m, Z igg=n
i=1 i=1
We get after analogous transformations
©  n
e e
Pe)o @G, e) =14 Z i On (z 8 (e1= T) 5.11)
n=1 *

where

S @ e () % (B
wn(z,§)=2_’_n1_!_ > [XI(Z)TXI(E)] [k kk]

m=1 Q-0 Qp)

By recalling (2.3) and (5.12) and carrying out the inverse transformation
of (5.6) we obtain as a result the force F{(t) in the form

F(it)y=V [1 — ) eic, (@ z"] (5.12)
n=1

where the coefficients ¢, (a) are

2 an a? 14+¥Vi—-0a
Clz-,_{'(’-——z__‘/1_aal a )
1 2at 14+ V1 —al 1 ¢ mE+VE —-1adt
Cr=—51+7—=h @+ \ v Fab)? (88 —1) (I —af
: 2( Vi+a a ) n§§(+u
> § a ¢ Pp (& N =3k
Cﬂ=(n+2)n'&1(1+ag)§v—g’-'“1§(§+n) A —a)n ¥V —1

It may be shown that the series (5.12) converges rapidly.
In case the plate 1s absent (¢ =« , ¢ = 0O) a simple expression for the
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force F,(t) acting on the body from the fluid, from (2.3) and (5.6), as
well as from the results of [1]

Fo(y =V —1 o< (5.13)

By calculating the coefficients in the series (5.12) by numerical inte-
gration for given values of g and ¢ , an estimate may be made of the
%ffecg of the plate on the impact of body and fluid by comparing (5.12) with

5.13).

6. Let the initial velocity of the body at the instant of impact be equal
to V,, and afterwards let the body move wilth a certain unknown veloclty
v(¢t) . We determine the law of motion of the body.

The force acting on the body from fluld and plate will be

t

Rm:%&ﬂ%ﬁwmﬁ (6-1)

0

according to the principle of Duhamel. Here the function p(t) must be
%aken)from the solution of the preceding problem in agreement with Formula
5.12).

The force R(¢) 1s directed agalnst motion of the body and therefore its
equation of motion in dimension%gss variables will have the form

dv Pol?
@@= TRRO (=) 6:2)
Here m 1s the mass of the body per unit length. In real cases the
parameter uy 1s small.

By recalling (5.12) and substituting (6.1) into (6.2) we get the integro-
differential equation
¢

dzt(t) + po (t) — HSK (t — ) v(r)dt =0, K@= Z ne"1C, @ "1 (6.3)

Retaining onl; the first term in the kernel and g:?§ing (6.3) by opera-

tional methodas for the condition »(0) = Vo > Wwe get an approximate solutlon
v (1) = Voe "5 [cosn(0.5 %) — %1yt sinh(0.5 x2)] = Vi< 4C, (@) (6.4)

which becomes more accurate the smaller 1s ¢

It follows from (6.4) that .

dv/dit<0, d®v/d2>0, dv/de<V, dv/du <0

Knowing v(¢), we find the resistance force R(t) from {6.1)as the obvious

function R () = Ve 00wt [cosh(0.5‘xt) — %71 (0 ¢ 2C, (a)) sinn(0.5 x2)] (6.5)

7 From (6.5) it follows that

—— dR /dt< 0, d&R/d2>0
T aR | da >, R /op <0

Results of numerical calculatlon show
that:

1) if m 1is large (u = O), then

N, N,
vV, and R depends strongly on the
}>\\\\ SN parameter g ;

2
~
\\\ 2) if the parameter p increases
{mass of the body decreases), then the
l/j dependence of v on q 18 strengthened,
ct/i ~N and that of R on o 4s diminished.

Fig. 3

=
uR N,
N
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From this the conclusion follows at once, if we recall that @ == ¢l }fo /o,
that the velocity v of the body diminishes with increasing o/p , and the
resistance force R on the body increases,

It is known [1] that in case of impact of a body on the surface of a com-

pressible fluid, its veloeity v,(t) and the force R,(t) of the fluid on
the body, are equal to

Vo (1) = Ve~ -3 [eosh (0.5xt) — 271 pusinn(0.5 %y1)] (6.6)

o=V FF )
Ry (1) = V&= 5 [eosn(0.5 %4t) — #g™> (1 + 2)sinh (0,5 xgt)] ( 6.7)

for O0g t g 1.

Numerical estimates may be made from Formulas (6.4) to (6.7) of the effect
of the plate on the impact of a body on a compressible fluid.

In the exanple of Flg, 3, curves 1 , 2 and 1', 2’ have been drawn
from Formulas %6.&), (6.5) and (6.6}, (6.7}, corresponding tc ¢ =-0.8 and
pw =04 . As is seen from the curves, the effect of the plate on the velo~
clty of the body is insigniflcant, but that there 1s a greater effect on the
force of reslstance.
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